# Grounding **Analysis for Utility** Scale Photovoltaic Power Plant Presented by David Lewis







### Introduction

- The purpose of this presentation is to outline a methodology for grounding system analysis of large utility scale photovoltaics, with regards to IEEE Std 80. At the end of this presentation you will be able to:
  - Describe a typical solar power plant grounding layout
  - Identify challenges encountered when evaluating solar power plant grounding systems
  - Describe analysis techniques to accurately assess grounding system performance





## Outline

- Utility Scale Photovoltaic Power Plant
- Grounding Basics
- Photovoltaic Power Plant Grounding
- Challenges for Grounding Analysis
- Case Study





### Photovoltaic Power

- Photovoltaic (PV) panels interconnected
- DC power inverted into AC power









### Photovoltaic Power Plant

Utility scale photovoltaic power plant









## Photovoltaic Power Plant







## **GROUNDING BASICS**





# Why Grounding?

- Allows proper equipment operation in normal and fault conditions
- Provide surge/lightning protection
- Personnel protection under fault conditions





# **Grounding Definitions**

- Earth/Ground Current
  - Current through ground grid returning to its source through earth
- Ground Potential Rise (GPR)
  - Maximum electrical potential that ground grid and surrounding soil may attain relative to "remote earth"







# **Grounding Definitions**

Touch Voltage



Step Voltage



# Photovoltaic Power Plant Grounding







# Photovoltaic Power Plant Challenges

- Data acquisition
  - Soil characteristics
  - Fault and coordination data
- Requires detailed understanding of the physical and electrical system
- Software capabilities





## Soil Characteristics

- Soil characteristics may vary across the site
  - Upper soil layer typically greater variation
- Multiple measurements
  - Several shorter traverses
  - Sufficient long traverses
- Surfacing layer is uncommon







## Fault and Coordination Data



- Utility POI
- Collector substation
- Collector feeders
- Determine sources





# Electrical and Physical Design

- PV arrays grounded
  - Continuous conductor
  - Panel track
  - Ground connection at support post
- PV panel span









# Electrical and Physical Design

- Collector substation
  - Connection to plant grounding
  - Neutral or shield wires







## Software Limitation

- Conductor impedances
  - Equipotential grounding system not applicable







## Software Limitation

- System electrification
  - Multiple sources/energized conductor
- Soil modeling
- Computational capability





# Determination of Touch/Step Voltage Hazards

- Determine hazardous scenarios
  - Fault magnitude
  - Grounding geometry
- Consider touch and step voltage criteria
  - Soil characteristics
  - Clearing time





## **Additional Considerations**

- Perimeter fence
  - Assess hazardous scenarios
  - Grounding may be required
    - Consider transfer voltages from substation/array
- Fault current split
  - Modeling shield/neutral wires is recommended
- Field testing can be complex





# Case Study



| Zone 1: |        |      |  |  |
|---------|--------|------|--|--|
| Тор     | 75 Ω-m | 15 m |  |  |
| Bottom  | 40 Ω-m | 00   |  |  |

| Zone 2: |         | (4)  |
|---------|---------|------|
| Тор     | 130 Ω-m | 30 m |
| Bottom  | 40 Ω-m  | 00   |

| Zone 3: |         |      |  |  |
|---------|---------|------|--|--|
| Тор     | 300 Ω-m | 4 m  |  |  |
| Middle  | 130 Ω-m | 25 m |  |  |
| Bottom  | 40 Ω-m  | 60   |  |  |

| Fault Data | a Location | Total SLG<br>(KA) | Delta<br>Contribution<br>(KA) | Clearing<br>Time (sec) |
|------------|------------|-------------------|-------------------------------|------------------------|
| 34 kV      | INV1       | 23.363            | 4.930                         | 0.3                    |
| 34 kV      | INV2       | 17.862            | 3.769                         | 0.3                    |
| 34 kV      | INV3       | 17.691            | 3.731                         | 0.3                    |
| 34 kV      | INV4       | 14.931            | 3.151                         | 0.3                    |
| 34 kV      | INV5       | 14.335            | 3.022                         | 0.3                    |
| 34 kV      | INV6       | 14.053            | 2.966                         | 0.3                    |
| 34 kV      | INV7       | 16.274            | 1.434                         | 0.3                    |
| 34 kV      | INV8       | 11.351            | 2.398                         | 0.4                    |
| 34 kV      | INV9       | 13.782            | 2.909                         | 0.4                    |
| 34 kV      | INV10      | 10.501            | 2.214                         | 0.4                    |





## **Base Model**







### Metallic Potential NW Corner Fault



















## **Ground Potential Rise**







### **Ground Potential Rise With Posts**







# Central Fault

















### Metallic Potential NE Corner Fault

























# Questions?

David.Lewis@EasyPower.com www.easypower.com



