OSHA & Arc Flash Hazard Analysis

John J. Kolak, MS, CSP

Praxis Corporation

EasyPower Webinar Series

OSHA & ARC FLASH HAZARD ANALYSIS

Impact of Revisions to the OSHA Electrical Safety Regulations

Introduction

- Important Definitions
- Understanding OSHA
 - Applicable standards
 - Integrating OSHA with Consensus standards
 - When to exceed minimum standards
- Overview of OSHA revisions...
- Next Steps...

You, before this webinar...

You, after this webinar...

Important Definitions

- Voltage (Phase to Phase vs Phase to Ground)
 - i.e. 120v/240v or 7,200v/12,470v
 - This becomes important when using Arc Flash Hazard Analysis (AFHA) software!
- Fault Current or Short-Circuit Current
 - Bolted Fault Current vs Arcing Fault Current
- Incident Energy (cal/cm²)
- Arc Flash Hazard
- Flame Resistant vs Arc Rated

UNDERSTANDING OSHA...

Why OSHA Was Created

- 1. The development and enforcement of Health and Safety standards
 - Consensus Standards
 - How CFR's and Consensus Standards Relate...
- 2. Establishing both employer and employee responsibilities regarding safety
 - General Duty Clause {section 5(a)(1)} of the OSHact...
- 3. Establishing record keeping requirements

Supply vs Utilization Regulations...

OSHA Standards

Utilization Standards

- •29 CFR 1910.302 .308 Design Standards
- •29 CFR 1910.331 .399 Safe Work Practices
- •29 CFR 1926.400-.449 Construction

Supply Standards

- •29 CFR 1910.269 Utility Maintenance. Std
- •29 CFR 1926.950-.959 Construction Industry T&D standards

Consensus Standards

Utilization Standards

- •National Electrical Code (NFPA 70)
- •NFPA 70E
- •NFPA 70B

Supply Standards

•National Electrical Safety Code (ANSI C2)

OSHA Home Page...

Select "Regulations"...

Regulations Page...

The List of Standards Appears Here...

Important Standards...

- 232012 TO TEPP T. TROTT PROTECTION OF TEPPORAL TROUBLE FORTH
- 1910.147 The control of hazardous energy (lockout/tagout).
 - 1910.147 App A Typical minimal lockout procedures

1910 Subpart S - Electrical

- o 1910.301 Introduction.
- o 1910.302 Electric utilization systems.
- o 1910.303 General.
- o 1910.304 Wiring design and protection.
- o 1910.305 Wiring methods, components, and equipment for general use.
- o 1910.306 Specific purpose equipment and installations.
- o 1910.307 Hazardous (classified) locations.
- 0 1910 308 Special systems

1910.269 - Electric Power Generation, Transmission, and Distribution.

- 1910.269 App A Flow Charts.
- 1910.269 App B Working on Exposed Energized Parts.
- o 1910.269 App C Protection from Step and Touch Potentials.
- o 1910.269 App D Methods of Inspecting and Testing Wood Poles.
- 1910.269 App E Reference Documents.

OSHA & Arc Flash Safety...

- There have been no substantial changes to Subpart S related to Arc Flash Hazards (AFH)...
- The Utility Maintenance Standard (29 CFR 1910.269) included the most substantive changes...
 - 1910.269 (g)(8): Personal Protective Equipment (Fall Arrest systems)
 - 1910.269 (l): Work On Energized Parts
 - Appendix E: Protection From Flames & Electric Arcs
- The most significant changes relate to High Voltage (>600v) systems (this can be Supply OR Utilization systems)
- The changes to OSHA do not precisely align with some of the Consensus standards (i.e. 2.0 cal/cm² vs 1.2 cal/cm²)

1910.269(I)(8): Work On Energized Parts

- All PPE must also meet the requirements of Subpart I (1910.132)...
- 1910.269(l)(8): Employers must assess the workplace for arc hazards...
 - Identify tasks that expose workers to arc flash hazards
 - Estimate Incident Energy
- Ensure employees don't wear clothing that will melt...
- The outermost layer must be FR at a minimum & Arc Rated (AR) if exposed to electrical arcs...
- Workers must wear AR clothing if exposed to >2 cal/cm²
- Hand protection not needed if wearing rubber gloves & arc exposures <14 cal/cm² (Let's talk about what to do if > 14 cal/cm²)
- Head protection need not be AR if <5cal/cm², 3-phase
- Foot protection need not be AR (if they are constructed of heavy leather) for any IE level
- The requirement to ensure employees exposed to arc hazards we AR clothing commences in April 1, 2015

1910.269 Appendix E: Protection From Flames & Electric Arcs

- Employer requirements:
 - 1. Assess flame & arc hazards
 - 2. Estimate IE exposures
 - 3. Ensure employees don't wear clothing that will melt
 - 4. Ensure employees wear properly-rated FR or AR clothing
- Identify sources of flame & arc exposures
- Determine the Probability that an arc will occur
- READ THE FOOTNOTES to the Tables!
 - Things like "rubber glove approach distances or Live-Line work distances" don't apply to most locations...
 - Single-phase vs Three-phase faults
- OSHA allows broad-estimates of IE exposures (be careful here...)
- Remember what an Arc Thermal Protective Rating (ATPV) rating means...

Selecting An AF Calculation Method...

TABLE 3-SELECTING A REASONABLE INCIDENT-ENERGY CALCULATION METHOD 1

Incident-energy calculation method	600 V and Less ²		601 V to 15 kV ²			More than 15 kV			
	1Ф	3Фа	3Фb	1Ф	3Фа	3ФЬ	1Ф	3Фа	3ФЬ
NFPA 70E-2012 Annex D (Lee equation)	Y-C	Y	N	Y-C	Y-C	N	N ₃	N ³	N ³
Doughty, Neal, and Floyd	Y-C	Y	Y	N	N	N	N	N	N
IEEE Std 1584b-2011	Y	Y	Y	Y	Y	Y	N	N	N
ARCPRO	у	N	N	Y	N	N	Y	Y ⁴	Y ⁴

Key:

1Φ: Single-phase arc in open air.

3Φa: Three-phase arc in open air.

3Φb: Three-phase arc in an enclosure (box).

Y: Acceptable; produces a reasonable estimate of incident heat energy from this type of electric arc.

N: Not acceptable; does not produce a reasonable estimate of incident heat energy from this type of electric arc.

Y-C: Acceptable; produces a reasonable, but conservative, estimate of incident heat energy from this type of electric arc.

Arc Flash Calculation Methods on Low Voltage Systems...

Arc Flash Calculation Methods On High Voltage Systems

Flash Hazard Approach Distances

TABLE 4-SELECTING A REASONABLE DISTANCE FROM THE EMPLOYEE TO THE ELECTRIC ARC

Class of equipment	Single-phase arc mm (inches)	Three-phase arc mm (inches)	
Cable	*NA	455 (18)	
Low voltage MCCs and panelboards	NA	455 (18)	
Low-voltage switchgear	NA	610 (24)	
5-kV switchgear	NA	910 (36)	
	NA	910 (36)	
15-kV switchgear	380 (15)	NA NA	
Single conductors in air (up to 46 kilovolts), work with rubber insulating gloves	$MAD - (2 \times kV \times 2.54)$		
Single conductors in air, work with live-line tools and live-line barehand work	(MAD - (2 × kV/10)) †		

IMPORTANT: IE can be calculated at different distances than listed in this table...

TABLE 6-INCIDENT HEAT ENERGY FOR VARIOUS FAULT CURRENTS, CLEARING TIMES, AND VOLTAGES ARCS IN OPEN AIR ONLY * † ‡ RUBBER INSULATING GLOVE EXPOSURES INVOLVING PHASE-TO-GROUND

Voltage range (kV) **	Fault current (kA)	Maximum clearing time (cycles)				
		4 cal/cm ²	5 cal/cm ²	8 cal/cm ²	12 cal/cm ²	
4.0 to 15.0	5	46	58	92	138	
	10	18	22	36	54	
	15	10	12	20	30	
	20	6	8	13	19	
	5	28	34	55	83	
15.1 to 25.0	10	11	14	23	34	

NOTE: Convert cycles to seconds by dividing the "Clearing Time" cycles by 60

Next Steps For Those w/Supply Systems...

- Consult the National Electrical Safety Code as well as the NFPA 70E
- Carefully consider whether arcing faults will likely result in phase-to-phase or phase-to-ground faults. Then, ensure the software you use will accurately-evaluate that type of fault...
- High Voltage work requires the use of insulated sticks which results in greater Working Distances than listed in the 1910.269 tables...
- Know & understand the <u>limitations</u> of whichever type of Arc Flash Hazard Analysis software you use!
- EXCEED minimum standards when non-standard conditions exist!

Next Steps For Those w/Utilization Systems

- If you have High Voltage systems, follow the 1910.269 guidelines for those systems
- If you have "Utility type equipment" *, follow the 1910.269 guidelines
- KNOW the requirements of Supply AND Utilization systems & follow the most protective standard...
- Following the requirements in the NFPA 70E-2015 will usually result in the best protection...
- Know & understand the <u>limitations</u> of whichever type of Arc Flash Hazard Analysis software you use!
- EXCEED minimum standards when non-standard conditions exist!

Closing Thoughts...

- Remember that OSHA or Consensus standards are only MINIMUM requirements!
- Know ALL the standards that relate to your location & follow the most protective one...
- Become intimately-familiar with your arc flash software...
- Use AFHA to MITIGATE arc exposures, not just to select AR PPE!

Questions?

