Capacitor Assisted Motor Starting

Paul B. Steciuk NEPSI – Northeast Power Systems, Inc.

NEPSI – BACKGROUND

- Established in 1995
- Based in Queensbury, NY
- Key products designed and manufactured by NEPSI
 - Medium-voltage <u>metal-enclosed</u> products (2.4kV 38kV) 200 kV BIL Max
 - Shunt Power Capacitor Banks (capacitive vars)
 - Harmonic Filter Banks
 - Shunt Reactor Banks (inductive vars)
 - Hybrid Shunt Capacitor and Shunt Reactor Banks
 - <u>actiVAR™</u> Thyristor-switched harmonic filter banks (2.4kV 13.8kV)
 - Medium Voltage Surge Protection Products
 - RC Snubbers
 - Motor Surge Protection
 - Medium-Voltage Transient Voltage Surge Protection

Service

- Startup | Commissioning | Maintenance
- Power System Studies
 - Harmonic Analysis, Power Factor, Motor Start,

Northeast Power Systems, Inc.

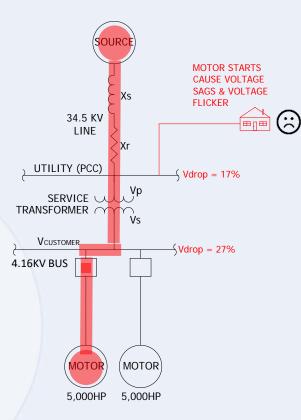
The Cost Effective Alternative to VFD Starters

WHAT CAN THE actiVAR™ BE USED FOR?

- It is a <u>cost effective alternative to VFD motor starters</u> where speed or process control is not required
 Capacitor Assisted Motor Start
- Fast "local" supply of reactive power
- Voltage Support
 - Large motor starts (voltage sag/flicker mitigation)
 - Impact loading of large motors
 - Loss of generation
- Meet utility interconnect requirements
 - Inrush current limits
 - Voltage sag limits

5000 HP ACROSS-THE-LINE MOTOR START

<u>Starting Power Flow</u> <u>@ XFMR Secondary</u> Real: 2.5 MW Reactive: 14 MVAR

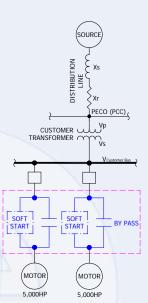

<u>Starting Current</u> 328A @ 34.5kV 2745A @ 4.16kV

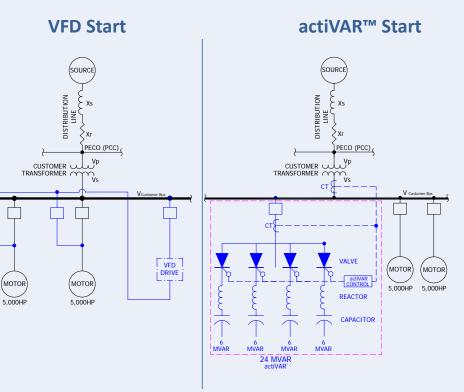
<u>Starting Torque</u> 0.37 PU (of rated torque)

Starting Time 9.1 Seconds

Full Load Current (FLA) ≈626 amps

Power


TYPICAL PROBLEMS ASSOCIATED WITH ACROSS-THE-LINE STARTING OF LARGE MOTORS


- Voltage sags
- Reduced starting torque of motor
 - Increased starting times
 - Increased motor heat
 - May cause motor to not start
- Motor and transformers may need to be larger to overcome motor starting torque requirements
- May not meet utility interconnect requirements

VOLTAGE SAG MITIGATION OPTIONS FOR LARGE MOTOR STARTS

RVSS Start

COMPARISION OF VOLTAGE SAG MITIGATION OPTIONS

RVSS Start

Advantages

- A potentially low cost option
- Soft mechanical start

Disadvantages

- May not be able to meet <u>starting torque</u> requirements
- May not meet interconnect requirements
- Requires E-House Space
- Produce Harmonics

VFD Start

Advantages

- Provides near rated torque at starting
- Soft mechanical start
- Meets utility voltage sag/inrush limits

Disadvantages

- Requires E-house space
- <u>Requires M_n+1 additional</u> motor starters
- Synch Transfer Controls
- High installed cost \$\$\$\$
- Produce harmonics
- Long delivery time
- Complexity of equipment
- May require cooling equipment

actiVAR[™] Start

Capacitor Assisted Motor Start

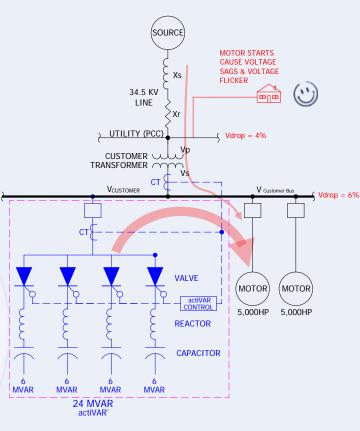
Advantages

- Provides near rated torque at starting
- Meets interconnect requirements
- Lower cost
- Simplest to install and maintain
- E-House not required Outdoor rated

Disadvantages

Does not provide a soft start function for mechanical loads that require it

actiVAR™ ASSISTED MOTOR START

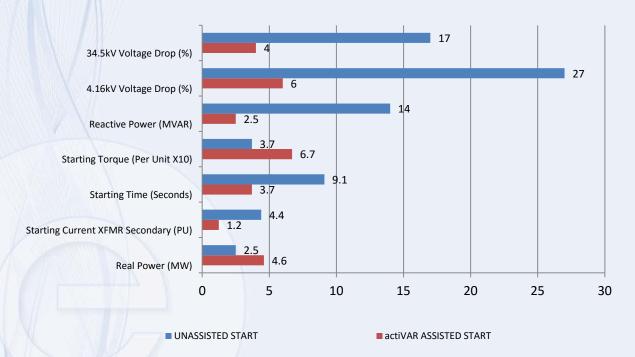

<u>Starting Power Flow @</u> <u>XFRM Secondary</u> Real: 4.6 MW Reactive: 2.5 MVAR

<u>Starting Current</u> 92A @ 34.5kV 770A @ 4.16kV

actiVAR[™] Power Flow (VAR Supply to Motor) Real: ≈ 0 MW Reactive: 21.3 MVAR

<u>Starting Torque</u> 0.63 PU (of rated torque)

Starting Time 3.7 Seconds EasyPower Power made easy.

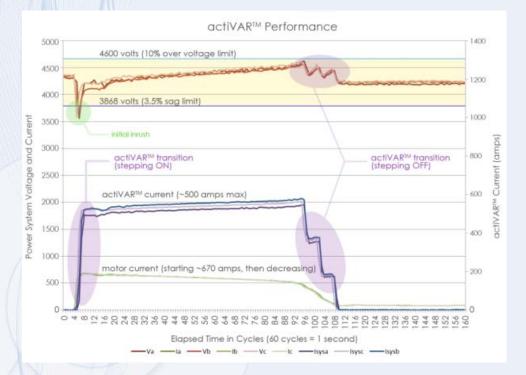


BENEFITS OF USING THE actiVAR

- The actiVAR[™] is a fast local supply of VARs
- The reduction in var flow through the source impedance reduces voltage sag at transformer primary and secondary
- Utility voltage sag, flicker, and inrush limits are met
- Power quality is improved throughout the system
- The motor starts faster due to higher starting torque
- Less heating in the motor during motor start

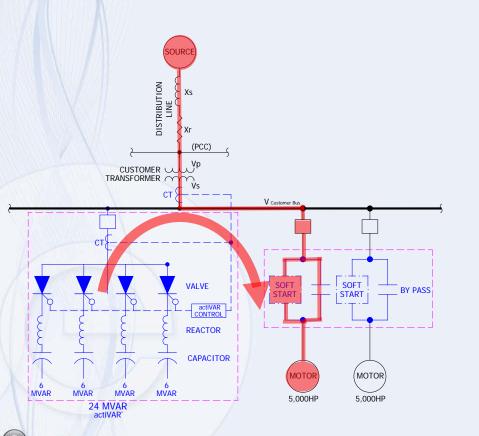
actiVAR™ PERFORMANCE

KEY TAKE AWAY


- Voltage drop is significantly reduced to within utility voltage drop limits.
- Starting Torque Proportional to V², translating to quicker motor starts
- Current through service transformer allows customers to meet utility maximum inrush current limits
- Higher voltage to motor results in higher available real power to motor

* Per Unit Starting Current Based on FLA = 624 Amps

actiVAR[™] – BASIC OPERATING SEQUENCE

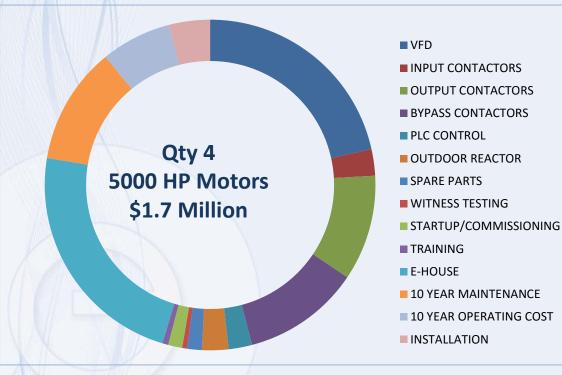

STEP-BY-STEP OPERATING SEQUENCE OF actiVAR^{M}

- 1. actiVAR[™] sits ready for action, monitoring for a motor start
- actiVAR[™] senses voltage drop and flow of current when motor starts transitions on, applying an appropriate amount of capacitance (VARs) to maintain system voltage
- 3. As motor comes up to speed, the actiVAR[™] senses the rise in system voltage and drop in motor VAR requirements and transitions off the appropriate amount of capacitance to maintain system voltage
- After motor start, the actiVAR[™] sits ready for action, waiting for next motor start

actiVAR ASSIST WITH RVSS

RVSS + actiVAR[™] Start

Advantages


- Lower cost than VFD start
- Extends the functional range of soft start option to higher HP ratings
- Provides "automatic redundancy" in functional HP range of soft start
- Soft mechanical start
- Starting impact < running impact
- Soft start harmonics are reduced while actiVAR is active

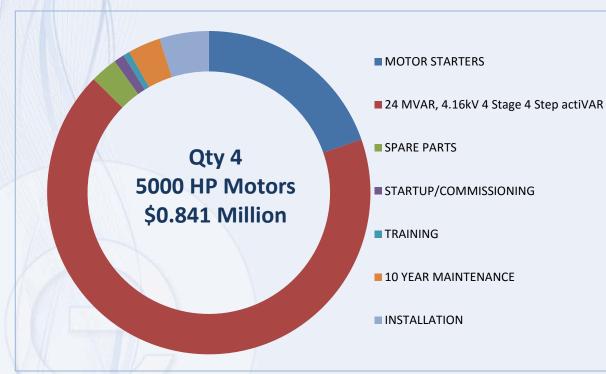
Disadvantages

- More complicated than either alone
- Produce some harmonics but at a lower level than standalone RVSS

VFD START – COST COMPONENTS

Key Cost Factors

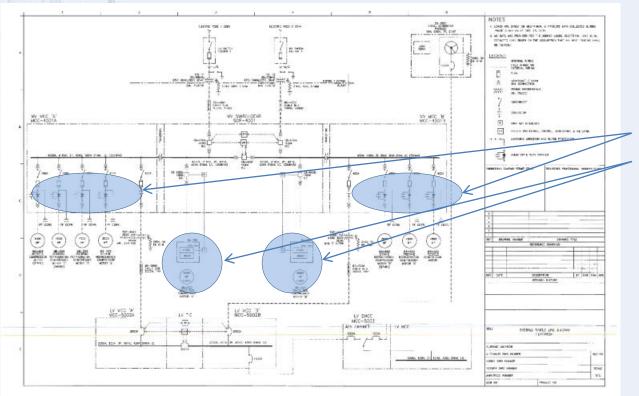
- VFD and E-House costs are significant
- Input and output contactors, VFD Bus, PLC contribute additional cost


* Basis of costs available on request

actiVAR™ START – COST COMPONENTS

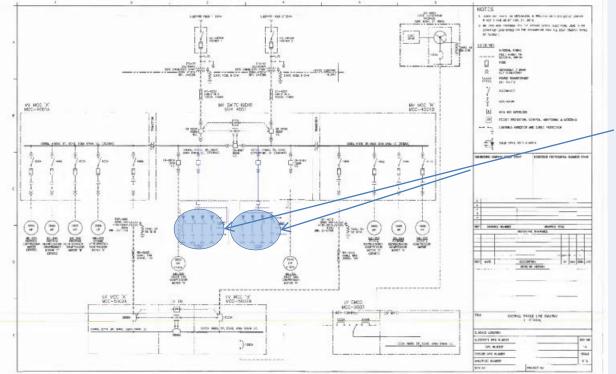
Key Cost Factors

 actiVAR[™] dominates the initial cost


 Without the costs associated with the E-House or the synch switchgear, the actiVAR[™] saves significantly on equipment cost

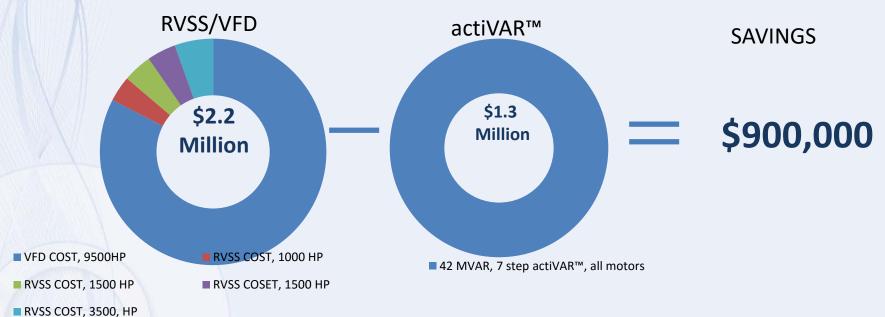
 $actiVAR^{TM}$ - a lower cost alternative

DEEP CUT GAS PLANT APPLICATION - USING RVSS AND VFD'S


Required Equipment For Starting Motors

- 7 RVSS starters
- Two 9,500 HP VFD starters
 - E-house space
 - Complexity
 - Possible need for cooling equipment
 - Lead-time

DEEP CUT GAS PLANT APPLICATION USING actiVAR $^{\rm TM}$


Required Equipment For Starting Motors with actiVAR[™]

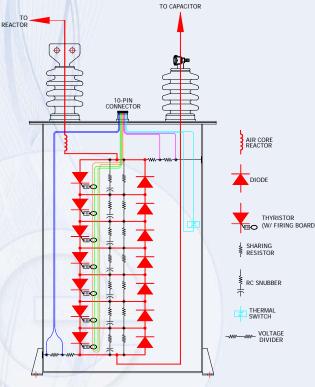
- Qty (2) 42 MVAR actiVARsTM
 - No E-house space
 - Comes fully assembled
 - Can be set up with a tie breaker to allow for redundancy
 - Simplicity
- Feeder breaker for each actiVAR™

DEEP CUT GAS PLANT - SAVINGS WITH actiVAR™

Savings for total plant implementation: \$1,750,000

TSC STAGES USE THYRISTOR VALVES FOR SWITCHING

THYRISTOR VALVE - DETAILS


- Maintenance free device
- Can be regarded as a singlephase solid-state switch
 - Transient free switching
 - No moving parts
- Sub-quarter-cycle response time
- Diodes hold capacitors at negative peak voltage when gated off
- Valves turns on (gate on) and off (gate off) at negative peak (full cycle conduction)

"FAST VARS"

THYRISTOR VALVE - INTERNAL SCHEMATIC

THYRISTOR VALVE INTERNAL SCHEMATIC

THYRISTOR VALVE SCHEMATIC

- Valve Tank 16 gauge stainless
- Cover 0.25" Stainless
- Oil Cooled & Insulated (non-PCB)
- 2 Porcelain Bushings (95kV BIL)
- 10-Pin Connector for control and monitoring
- Provided with and without cooling fins fins.
 - Cooling fins allow for continuous operation of valve
- Series & parallel connected diodes and thyristors for bidirectional control of current
- Transient current (di/dt) and transient voltage (dv/dt) protection
- Diodes keep capacitors in a charged state
- Self-monitoring | self-protecting
- N+1 and N+2 designs for higher reliability

actiVAR[™] Project Picture

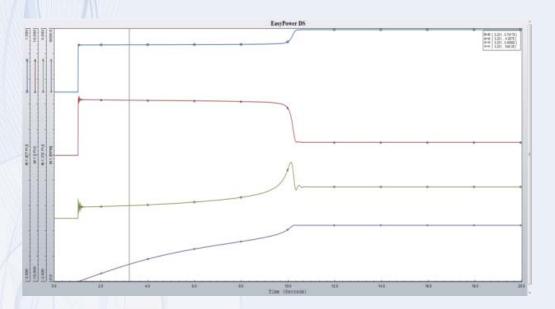
SIZE LOAD COLONIAL PIPELINE CO. Brandymine Station in Boothwyn, PA actiVAR[™] 4.16 kV, 24 MVAR, 4-Stage, 4-Step (6 / 6 / 6 / 6 MVAR)

Pipeline Motor Start Application – 5000 HP Induction Motor

actiVAR[™] Project Picture

Pipeline Motor Start Application – 5000 HP Induction Motor

actiVAR[™] Project Picture



Pipeline Motor Start Application – 10,000 HP Synchronous Motor

MOTOR START ANALYSIS – Dynamic Analysis

Typical plot output from dynamic analysis software showing motor terminal voltage, motor current, motor speed, and motor torque versus time

DYNAMIC ANALYSIS (EasyPower)

- Performed by NEPSI for all actiVAR™ orders and RFQ's
- Accurately calculates motor starting time, motor current, voltage, torque, power, and speed for the entire starting period
- Determines whether a motor will start or not start
- Accurately predicts actiVAR™ performance
- Requires more Data
 - System impedance data
 - Motor impedance data; torque speed curves and inertia data
 - Load torque and inertia data
- Also used to check for resonance concerns (harmonic analysis)

NEPSI RESOURCES TO ASSIST IN APPLICATION OF actiVAR™

- Contact NEPSI about your application
 - NEPSI will provide motor start and actiVAR[™] performance study, quote, and drawings to allow for comparison against alternate technologies
- Web nepsi.com/actiVAR[™]
 - Product literature
 - Guide form specifications
 - Case studies
 - actiVAR[™] calculator for motor starting applications
 - actiVAR[™] RFQ form to fill out and submit

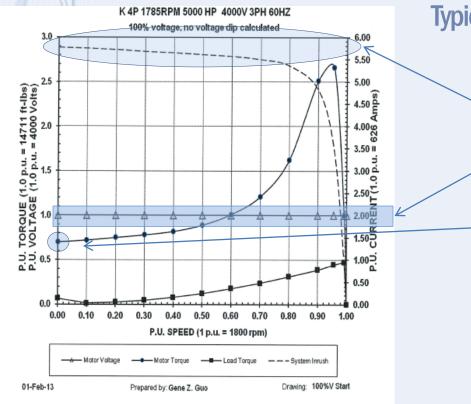
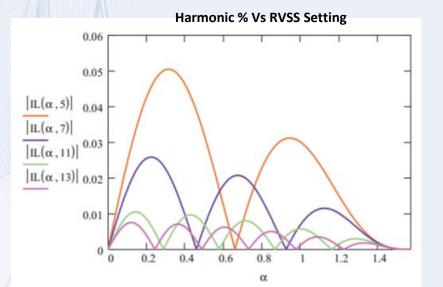


Fig. 1 Starting Characteristics (Rated Voltage, Valve Closed)

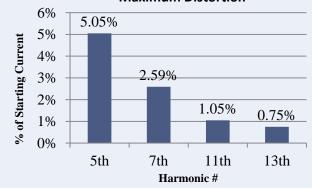
Typical Starting Characteristics – 5000 HP Induction Motor

- High starting current
- Motor torque-speed curve is often based on 1 PU terminal voltage
- Medium voltage motors often have low starting torque
- Load torque curve superimposed on motor torque-speed curve

TYPICAL MOTOR DATA SHEETS


• Supplied by manufacturer

Model	5K861274C1	% Efficiency (load)	
Туре	к	1.25	0.964
Enclosure	WPII	1.00	0.966
Frame size	8612S	0.75	0.967
Horsepower	5000	0.50	0.958
Voltage	4000	% Power Factor (load)	
Phase	3	1.25	0.891
	3	1.00	0.892
Frequency	60	0.75	0.890
Synchronous Speed (rpm)	1800	0.50 Sofo Stall Time (cocondo)	0.879
Full Load Speed (rpm)	1785	Safe Stall Time (seconds) Motor Inertia (Ib. Ft. ²)	13
Insulation Class	В	Approximate Net Weight (lbs.)	5550
Service Factor	1.15	Type Bearings	31010
Temperature Rise at S.F. (°C)	75 RISE BY RTD	Lubrication	SLEEVE (INSULATED) FORCED OIL
Full Load Current (amps)	626	End Play (inches)	0.5 MIN
Locked Rotor Current (amps)	3612	Rotation (viewed from opposite drive end)	CW
NEMA Code Letter	F	Outline	34C110584-001
Full Load Torque (lb. ft.)	14711	Motor equivalent circuit parameters	
Locked Rotor Torque (% Rated torque)	70	(Zb=3.842 Ω)	X1pu: 0.113; X2pu=0.084; Xmpu=5.265 R1pu: 0.004; R2pu=0.009
Breakdown Torque (% Rated torque)	266		

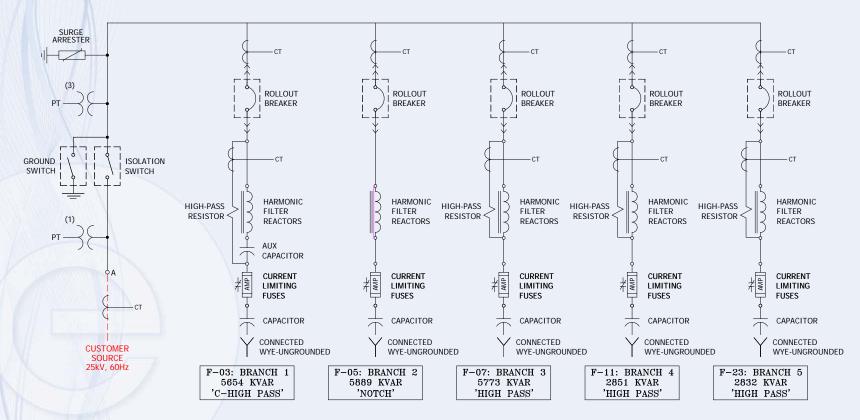


RVSS HARMONICS

RVSS Harmonics

- Harmonic magnitudes vary with soft starter settings
- Magnitude can be significant (% of motor start current)
- Harmonics can cause spurious plant PQ issues

Maximum Distortion


LARGE HARMONIC FILTER SYSTEMS

LARGE HARMONIC FILTER ONE-LINE DIAGRAM

