

Symmetrical Components

David Castor, P.E.

SYMMETRICAL COMPONENTS AND EASYPOWER - AN INTRODUCTION

David Castor, P.E.

Why We Use them?

- Using standard single-line diagrams, complex impedances, and phasors, we can analyze steadystate conditions for all sorts of ac systems and configurations - as long as the three phase voltages and currents are equal in magnitude.
- For *imbalanced* conditions (ground faults) things get extremely complicated to analyze due to the coupling between the three phases.

Symmetrical Components

- C. L. (Charles Legeyt) Fortescue (1918): Any set of N unbalanced phasors can be represented by N sets of balanced phasors.
 - Balanced system can be simulated with single phase. Easier to analyze and compute.
 - Three phase unbalanced vectors → three balanced "sequence vectors."

We still use this mathematical technique to this day!

Three Sets of "Sequence" Vectors (Phasors)

- Each set of sequence vectors is balanced that is what makes this approach easier to solve
- Positive Sequence (e.g. V_{A1}) this is the normal power system phase sequence quantities
- Negative Sequence (e.g. V_{A2}) Balanced phasors with negative phase <u>sequence</u>
- Zero Sequence (e.g. V_{AO}) Three identical phasors
 same phase angle.

Sequence Vectors

Symmetrical Components

Written in terms of sequence vectors (which are all symmetrical):

$$I_A = I_{A0} + I_{A1} + I_{A2}$$

$$I_B = I_{B0} + I_{B1} + I_{B2}$$

$$I_C = I_{C0} + I_{C1} + I_{C2}$$

Symmetrical Components Math

Since sequence vectors are symmetrical and balanced, they have clearly defined relationships:

$$I_{B1} = a^2 \cdot I_{A1}, I_{C1} = a \cdot I_{A1}$$

$$I_{B2} = a^2 \cdot I_{A2}, I_{C2} = a \cdot I_{A2}$$

$$I_{A0} = I_{B0} = I_{C0}$$

Where:

$$a = 1 \angle 120^{\circ}$$

Symmetrical Components Math

$$I_A = I_{A0} + I_{A1} + I_{A2}$$

$$I_B = I_{A0} + a^2 \cdot I_{A1} + a \cdot I_{A2}$$

$$I_C = I_{A0} + a \cdot I_{A1} + a^2 \cdot I_{A2}$$

Sequence Impedances

Transmission lines:

- Pos. & Neg. sequence impedances are equal.
- Zero sequence impedance includes ground wires, shield wires, earth.

Cables, Busway, etc:

- Pos. & Neg. sequence impedances are equal.
- Zero sequence similar to transmission line, but can be higher.

Sequence Impedances

Generators:

- Pos. & Neg. similar except for impedances and voltage induced by rotating machinery.
- Zero sequence varies, but generally smaller than positive and negative sequence impedances.
 - MV generators normally impedance grounded.

Sequence Impedances

Transformers:

- Pos. & neg.
 sequence
 impedances
 are equal.
- Zero sequence depends on transformer connections

Fault Calculation Example

Look at **Line-to-Ground** Fault for this simple system

Positive Sequence Network

Negative Sequence Network

Zero Sequence Network

Combine Networks

- Once the sequence networks are defined, we need to determine how they are interconnected at the fault - this depends on the type of fault
- For a single line-to-ground fault on Phase A, I_B and I_C equal zero. It can be shown that to satisfy the fault conditions, the three sequence current for Phase A must be equal
- The only way this can happen is for the three sequence networks to be in <u>series</u>.

Resulting Sequence Diagram

 Since the positive and negative sequence impedances are equal, this simplifies to:

$$I_{\text{Fault pu}} = \frac{V_{\text{Drive}}}{2Z_{\text{1 pu}} + Z_{\text{0 pu}}}$$

Any <u>fault</u> impedance would show up as 3Zf in the sequence diagram since it will be each sequence

ONLY VALID FOR SLG FAULTS!

Other Fault Types

- Process is similar for other types of unbalanced faults
- Sequence networks are the same.
- The difference is in how the sequence networks are <u>interconnected</u> based on the fault conditions.
- Standard references have tables of interconnection of networks for various faults types.
- This is all handled automatically in EasyPower

Short Circuit in EasyPower

One-line display options

Short Circuit in EasyPower

Short Circuit in EasyPower

EasyPower Example

- We'll look at doing unbalanced fault calculations in EasyPower
- Look at symmetrical component results

